Resolving crossing fibres using constrained spherical deconvolution: Validation using diffusion-weighted imaging phantom data
نویسندگان
چکیده
Diffusion-weighted imaging can potentially be used to infer the connectivity of the human brain in vivo using fibre-tracking techniques, and is therefore of great interest to neuroscientists and clinicians. A key requirement for fibre tracking is the accurate estimation of white matter fibre orientations within each imaging voxel. The diffusion tensor model, which is widely used for this purpose, has been shown to be inadequate in crossing fibre regions. A number of approaches have recently been proposed to address this issue, based on high angular resolution diffusion-weighted imaging (HARDI) data. In this study, an experimental model of crossing fibres, consisting of water-filled plastic capillaries, is used to thoroughly assess three such techniques: constrained spherical deconvolution (CSD), super-resolved CSD (super-CSD) and Q-ball imaging (QBI). HARDI data were acquired over a range of crossing angles and b-values, from which fibre orientations were computed using each technique. All techniques were capable of resolving the two fibre populations down to a crossing angle of 45 degrees , and down to 30 degrees for super-CSD. A bias was observed in the fibre orientations estimated by QBI for crossing angles other than 90 degrees, consistent with previous simulation results. Finally, for a 45 degrees crossing, the minimum b-value required to resolve the fibre orientations was 4000 s/mm(2) for QBI, 2000 s/mm(2) for CSD, and 1000 s/mm(2) for super-CSD. The quality of estimation of fibre orientations may profoundly affect fibre tracking attempts, and the results presented provide important additional information regarding performance characteristics of well-known methods.
منابع مشابه
Resolving crossing fibres using constrained spherical deconvolution: validation using DWI phantom data
Introduction A number of acquisition and reconstruction techniques have recently been proposed to extract the orientations of the white matter fibres within each imaging voxel from diffusion-weighted imaging (DWI) data. Of these, the diffusion tensor model is currently the most commonly used, but is limited in that it cannot resolve crossing fibres [1]. Constrained spherical deconvolution (CSD)...
متن کاملDetermination of Fiber Direction in High Angular Resolution Diffusion Images using Spherical Harmonics Functions and Wiener Filter
Diffusion tensor imaging (DTI) MRI is a noninvasive imaging method of the cerebral tissues whose fibers directions are not evaluated correctly in the regions of the crossing fibers. For the same reason the high angular resolution diffusion images (HARDI) are used for estimation of the fiber direction in each voxel. One of the main methods to specify the direction of fibers is usage of the spher...
متن کاملSparse Solution of Fiber Orientation Distribution Function by Diffusion Decomposition
Fiber orientation is the key information in diffusion tractography. Several deconvolution methods have been proposed to obtain fiber orientations by estimating a fiber orientation distribution function (ODF). However, the L 2 regularization used in deconvolution often leads to false fibers that compromise the specificity of the results. To address this problem, we propose a method called diffus...
متن کاملImproving Fiber Alignment in HARDI by Combining Contextual PDE Flow with Constrained Spherical Deconvolution
We propose two strategies to improve the quality of tractography results computed from diffusion weighted magnetic resonance imaging (DW-MRI) data. Both methods are based on the same PDE framework, defined in the coupled space of positions and orientations, associated with a stochastic process describing the enhancement of elongated structures while preserving crossing structures. In the first ...
متن کاملThe application of a new sampling theorem for non-bandlimited signals on the sphere: Improving the recovery of crossing fibers for low b-value acquisitions
Recent development in sampling theory now allows the sampling and reconstruction of certain non-bandlimited functions on the sphere, namely a sum of weighted Diracs. Because the signal acquired in diffusion Magnetic Resonance Imaging (dMRI) can be modeled as the convolution between a sampling kernel and two dimensional Diracs defined on the sphere, these advances have great potential in dMRI. I...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- NeuroImage
دوره 42 2 شماره
صفحات -
تاریخ انتشار 2008